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a b s t r a c t

A mathematical model was developed to investigate the cathode catalyst layer (CL) performance of
a proton exchange membrane fuel cell (PEMFC). A numerous parameters influencing the cathode CL
performance are implemented into the CL agglomerate model, namely, saturation and eight structural
parameters, i.e., ionomer film thickness covering the agglomerate, agglomerate radius, platinum and
carbon loading, membrane content, gas diffusion layer penetration content and CL thickness. For the
first time, an artificial neural network (ANN) approach along with statistical methods were employed
eywords:
rtificial neural network
roton exchange membrane fuel cell
atalyst layer
gglomerate model

for modeling, prediction, and analysis of the CL performance, which is denoted by activation overpoten-
tial. The ANN was constructed to build the relationship between the named parameters and activation
overpotential. Statistical analysis, namely, analysis of means (ANOM) and analysis of variance (ANOVA)
were done on the data obtained by the trained neural network and resulted in the sensitivity factors of
structural parameters and their mutual combinations as well as the best performance.
nalysis of means
nalysis of variance

. Introduction

One of the main obstacles for the mass production of proton
xchange membrane fuel cell (PEMFC) is its cost and durability
alance. It is significantly affected by catalyst layer (CL) design
nd performance especially cathode catalyst layer. The key elec-
rochemical reaction takes place in the cathode CL in which oxygen

olecule is combined with proton H+ and generates electrical
urrent. The amount of generated current as a result of electro-
hemical reaction depends on the CL structural parameters and
lso the way the CL is synthesized. A robust and reliable PEM
uel cell performance analysis requires a thorough understand-
ng of CL performance through extensive parametric studies. Since
xperimental investigations are very time consuming and costly,
umerical simulation can be very useful in CL performance predic-

ion.

In order to reliably predict the CL performance, an agglom-
rate model is developed to capture the complex multi-material
tructure of the CL. Agglomerate models seem to predict the
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CL performance better compared to interface model and macro-
homogeneous model [1]. Here, we focus on agglomerate model to
investigate the CL performance and we would like to know: (1)
Since the solution of numerical model can be complicated and time
consuming, is there a general model to describe the CL performance
with respect to independent parameters in a simple and easy way?
(2) Since many CL parameters especially CL structural parameters
are involved in the numerical simulation, how much is the influence
of various parameters affecting the CL performance? To address
the above questions, an artificial neural network (ANN) approach
is employed.

There are several studies about the ANN modeling of fuel cells
parameters based on simulated and experimental data. Lee et al.
[2] have used a feed forward back propagation network in which
the cell potential was modeled as a function of four input vari-
ables (i.e., current density, reactant pressures and cell temperature)
based on experimental data set. It was shown that the ANN can
predict well the fuel cell power system. Wu et al. [3] have applied
the ANN to simulate an experimental data set with six input
independent variables (i.e., operating temperature and pressure,

anode and cathode humidification temperature, anode and cath-
ode stoichiometric flow ratio) with respect to electrical power.
The performance of three different types of ANN, namely, multi
layer perceptron, generalized feed forward network, and Jordan
and Elman network has been examined and compared by Lobato

dx.doi.org/10.1016/j.jpowsour.2010.12.061
http://www.sciencedirect.com/science/journal/03787753
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Constitutive relations.
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in Fig. 2. It is seen that an ANN consists of a network with three
δagg

ig. 1. Schematic representation of an agglomerate structure for catalyst layer (CL).

t al. [4]. These three types were used to model the performance
f a polybenzimidazole–polymer electrolyte membrane fuel cell
n which the designed network had three input variables (con-
itioning and operating and current density) and three output
ariables (potential, cathode and ohmic resistance). A high power
EM fuel cell model was simulated employing ANN using the data
et obtained by a dynamic model and experiments by Siswora-
ardjo et al. [7]. They have found a close agreement between the
utputs of the designed ANN and the experimental results.

To the best of authors’ knowledge, there is no previous report
f the application of ANN approach on CL modeling. In this paper, a
ethodology based on ANN was applied to study the dependence

f CL performance on the CL structural parameters. An spheri-
al agglomerate structure for the CL is considered, which takes
nto account the effects of the liquid water saturation and eight
tructural parameters (i.e. ionomer film thickness covering the
gglomerates, agglomerate radius, platinum and carbon mass load-
ng, gas diffusion layer (GDL) penetration fraction and porosity,
nd CL thickness). First, some input and corresponding output data
oints obtained from the developed agglomerate CL model were
sed to train the ANN. The designed ANN was then employed to
redict the performance of the CL for unseen input data points. In
ddition, statistical methods were employed to identify the effect
f each input parameter as well as their combinations on the CL
erformance (determined by activation overpotential). Interesting
esults were attained and discussed.

. Model description

Here, a one dimensional steady state mathematical model for
he cathode CL based on a homogenous agglomerate structure
s developed. Fig. 1 represents a schematic representation of an
gglomerate structure for CL. It is assumed that the CL is constituted
f partially flooded spherical agglomerates with the average radius
f ragg. Each agglomerate consists of platinum and carbon (Pt/C)
articles that are bonded together with fully saturated electrolyte
ionomer phase) and GDL material. Agglomerate may be covered
y an evenly distributed ionomer with the thickness of ıagg. The
ransport of oxygen within the porous cathode CL is governed by
ick’s law of diffusion as follows [5]

dCO2

dz
= i − I

4FDeff
O2

(1)

he electrochemical reaction rate for the agglomerate covered with
onomer having the thickness of ıagg is obtained from [6]

di
(

1 ıagg ragg + ıagg

)−1
CO2
dz
= 4F

Ek1A
+

aaggDO2,m ragg KO2

(2)

here the first order reaction rate constant k1 is related to acti-
ation overpotential � and exchange current density i0 via Tafel
davg
4
3
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DKn
1
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√
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k1 = 1
4F
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Cref
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[
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RT
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)]

(3)

Finally, an expression for the activation overpotential can be
obtained using Ohm’s law [5]. There is a resistance against the pro-
ton and electron migration through the polymer and solid portions
of the CL, respectively. Therefore,

d�

dz
= i

�eff
+ i − I

�eff
. (4)

Eqs. (1), (2), and (4) comprise a coupled nonlinear ODEs with the
unknowns CO2 , i, and � that govern the oxygen, proton and elec-
tron transport within the agglomerates. Boundary conditions are
needed to solve the ODEs and are given in detail in Ref. [8]. As
it was shown, the GDL/CL interface corresponds to z = 0 and the
CL/membrane interface corresponds to z = lc. Other necessary rela-
tionships and constitutive equations are listed in Table 1. Other
necessary constants in Table 1, i.e., � and � can be found in the
previous study of the author [8].

3. Design of artificial neural network

An ANN is a calculation processing paradigm that has been
inspired by the way biological neurons and brain process the infor-
mation. The key element of a biological neural system is the parallel
distributed process nature. It composes of a great number of highly
interconnected simple process units called neuron working in a
unit union. This is true of ANNs as well. A typical ANN is shown
main elements, i.e., input vector, hidden layer(s), and output layer.
As illustrated in Fig. 3, each neuron receives an input P. Each input
is multiplied by an associated weight W and then is added by a bias
b. The product (WP + b) is the net input shown by n. The net input
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Table 2
Input parameters and their corresponding values used in this work.

Independent variables Level 1 Level 2 Level 3

s 0 0.6 1
ıagg 0 40 × 10−9 80 × 10−9

ragg 0.25 × 10−6 0.5 × 10−6 1 × 10−6

mPt 0.04 0.05 0.06
mC 0.002 0.003 0.004
Lm,c 0.1 0.25 0.4

predicted data. Therefore, our proposed ANN is able to model and
predict the CL performance with respect to the input parameters.

One can say that it is feasible to fit the activation overpoten-
tial as a function of underlying independent parameters using a

100

101

E
rr

o
r 

(M
S

E
)

Input Vector Hidden Layer Output Layer

Fig. 2. Schematic diagram of a typical artificial neural network (ANN).

s an argument of a transfer function f, which determines a neuron
utput a. A typical transfer function f is log-sigmoid, which is also
sed in this study and has the following form

= f (WP + b) = 1
1 + exp(−(WP + b))

(5)

his transfer function takes any value and squashes the output a
etween 0 and 1. The neuron shown in Fig. 3 is a simplified neuron
odel firstly introduced by McCulloch and Pitts [9]. They showed

he network of these artificial neurons can compute any arithmetic
r logical function. The greatest advantage of ANNs could be their
bility to serve as an approximation model for any arbitrary func-
ion [10].

In this study, an ANN system for the prediction of cathode CL
erformance of a PEMFC determined by its activation overpoten-
ial was put to test. Here, we used the numerically attained data set
y the mathematical model in which the activation overpotential
an be computed as a function of saturation and eight CL structural
arameters, i.e., ionomer film covering the agglomerate, agglomer-
te radius, platinum and carbon loading, membrane content, GDL
enetration content, and CL thickness. Each input parameter for
he present study changes in three levels as shown in Table 2. It is
oted that a cell current density of I = 5000 A m−2 is considered.

After preparing the data set, an ANN is designed to find the
elationship between the dependent parameter (i.e., activation
verpotential) and the input parameters (i.e., saturation, ionomer
lm covering the agglomerate, agglomerate radius, platinum and
arbon loading, membrane content, GDL penetration content, and
L thickness). Here, a back propagation feed forward network with
ne hidden layer and Levenberg–Marquardt learning algorithm is

mployed. A detailed description of back propagation algorithm can
e found in Ref. [11]. A back propagation trained neural network is
onstructed by selecting an appropriate architecture of neurons in
he network. This includes how many layers of the neurons should
e used, the number of neurons in each layer, and how neurons

P W ∑

b

fa= (WP+b)
f

Fig. 3. Mathematical model of a neuron.
Lg,c 0.05 0.1 0.15
εg 0.3 0.4 0.45
lc 1 × 10−5 3 × 10−5 5 × 10−5

should be connected. In the present study, a network architecture
with one hidden layer is selected, which was shown to capture
any complex relationship that may exist between the input(s) and
output(s) [12]. The number of neurons is selected to give the best
performance for the designed ANN.

After the network architecture has been designed, the network
is trained. Training is done by assigning random weights and biases
to each neuron, presenting a series of input and output values as a
training data set and evaluating the error. In the training procedure,
the network’s unknowns, i.e., weights and biases are determined to
reduce the difference between the predicted output and the actual
value. The training process continues until the network ability to
generalize, as measured by its predictive performance on the test
data set, is optimal. 10 percent of the whole data set is kept for
testing data. It means that 90 percent of the available data set was
used for training. The performance of the ANN is evaluated by the
squared correlation coefficient (R2) and mean square error (MSE),
which show the accuracy of the target output toward the predicted
output by the trained ANN [13]. It is noted that for a perfect corre-
lation R2 and MSE should be 1 and 0, respectively. The best neural
network design was found to have one hidden layer with 18 neu-
rons. Fig. 4 presents the training process of the designed ANN with
the training cycle (i.e., epoch). As can be seen, the MSE monoton-
ically declines for training data set with epochs. Finally, it reaches
a value smaller than 0.002 after 2000 epochs. The corresponding
R2 and MSE were 0.8 and 0.0016, respectively, for the test data set.
Fig. 5 displays the comparison of activation overpotential of numer-
ical data points with the ones predicted by the designed ANN. It can
be observed a good agreement between the numerical data and the
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Fig. 4. Plot of the mean squared error (MSE) versus the number of epochs for training
of the designed artificial neural network (ANN).
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ig. 5. Plot of the activation overpotential predicted by ANN method versus the
orresponding activation overpotential obtained by the numerical simulation for
he test data set.

olynomial function. Therefore, we should mention some advan-
ages of the ANN method over the polynomial fitting as listed
elow.

The ANN method can globally search a highly dimensional space
of independent parameters in a rapid and easy way. However,
in contrast to the ANN method, the polynomial fitting needs
a tedious and time-consuming procedure to do such a global
searching. Therefore, one can essentially achieve more accurate
and reliable results in a specified computational time using the
ANN method compared to those obtained by the polynomial fit-
ting.
The ANN method is quite flexible to estimate an arbitrary objec-
tive function (here, the activation overpotential) as compared to
the polynomial fitting since there are a lot of options to design
an ANN such as the type of activation functions, the number of
layers, the number of neurons per hidden layer(s) and so on.
The results modeled or predicted using the ANN method are easily
tractable since they can be directly analyzed with the available
statistical tools. A good example has been illustrated in this case
study.

. Results and discussion

The designed ANN model could be applied to make further pre-
iction of CL performance for data points, which not belong to the
umerical data set.

Two preliminary advantages of ANN are its massively parallel-
istributed structure and its ability to learn and therefore
eneralize. The first advantage, i.e., massive parallel-distributed
tructure gives this ability to ANN to process the information with
igh speed. The second advantage, i.e., generalization refers the
bility of ANN to produce reasonable output(s) for input(s) not
ncountered during the training process [14]. A well-designed ANN
s able to generalize providing its performance against the test data
et is very good. Generally speaking, the central idea of using ANN
s to perfectly predict the results, i.e., output for a set of input
arameters for the unseen data set without necessarily expending
uch time and energy on numerical simulation and/or experiment.
he time consumed for the numerical simulations for 19,683 data
oints was about 10 h on a CPU with a clock speed of 1.4 GHz. While,
he time needed for the designed ANNs to provide the rest of data
et (72,900 data points) was about 5 min on the same CPU. More-
ver, the prediction process using the ANN method does require
Power Sources 196 (2011) 3750–3756 3753

little or no human intervention compared to that of the numerical
calculations. Additionally, an ANN ignores large noises or variations
while it drives principle rules for a given problem. Generally, such
noises and variations can be expected in numerical simulations and
experiments.

Despite the aforementioned interesting characteristics, ANNs
provide no information of physical interpretations concerning
underlying problems. ANNs are generally perceived as being a
black box and are not able to give explanation of how outputs
are obtained. However, it is desirable to extract knowledge from
the trained ANNs so that one can gain a better understanding of
the solution. To this end, two statistical methods, namely, anal-
ysis of means (ANOM) and analysis of variance (ANOVA) were
employed. It is emphasized that the complete data set obtained
with the aid of the ANN approach is required to statistically
analyze the CL performance (determined by activation overpoten-
tial).

Both ANOM and ANOVA are based on the principle of linear
superposition approximation [15]. The ANOM is used to deter-
mine the main effect of each independent input variable on
the dependent output variable, i.e., activation overpotential. The
ANOM value for each level of a parameter is determined while
all other parameters’ levels are varied. The ANOM plot shows the
average trend of the output parameter versus each input inde-
pendent variable. While ANOM does not determine the possible
interactions between the input parameters, ANOVA can be per-
formed for the consideration. The interaction term implies how
the combined independent variables affect the target output. Fur-
thermore, in the present study, ANOVA is used to quantify the
importance of the parameters, which can affect the CL perfor-
mance. The mathematical treatment of these statistical methods,
i.e., ANOM and ANOVA has been given in our previous work
[16].

The results of the ANOM procedure concerning the effect of
input parameters (i.e., saturation, Nafion film covering the agglom-
erate, agglomerate radius, platinum and carbon loading, membrane
content, GDL penetration content, and CL thickness) on the out-
put (i.e., activation overpotential) are demonstrated in Fig. 6 and
discussed below.

1. Liquid water saturation 1 corresponds to fully flooded CL and 0
liquid water saturation corresponds to fully open pores of CL. It
has been observed (Fig. 6-(1)) that the CL performance deterio-
rates when the liquid water saturation increases. The reason is
that there is a direct relationship between the diffusion resis-
tance of oxygen to reach the reaction site and the liquid water
saturation due to less open pore spaces. It is worthwhile to men-
tion that in the case of fully flooded pores, the effective oxygen
diffusion coefficient is in the order of 10−9 and in the case of no
liquid water, it has the order of 10−6.

2. As can be seen in Fig. 6-(2), there is a slight increase of activa-
tion overpotential from zero to 0.4 × 10−7 followed by steeper
increase. An increase in the thickness of ionomer film covering
the agglomerates causes a decrease in the reaction rate resulted
from higher resistance against the oxygen diffusion into the
agglomerate. The optimum value is acquired at the zero ionomer
thickness. This agrees with the numerical optimization of Secan-
dell et al. [17] where it was concluded that adding the ionomer
film has no benefit.

3. Increasing agglomerate radius has two competing effects (see
Fig. 6-(3)). Higher radius of agglomerates increases the diffusion

length of dissolved oxygen inside the agglomerate as a results
of longer diffusion length. On the other hand, it leads to bigger
pores between the agglomerates and therefore higher diffusion
coefficient of oxygen. It can be seen that the ANN prediction in
Fig. 6-(3) proposes an optimum value for the agglomerate radius
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ig. 6. Main effects of the input parameters (i.e., saturation and eight structural
latinum and carbon loading, membrane content, gas diffusion layer penetration c
eans (ANOM).

ragg. The optimum value for ragg has been also observed in the
numerical study of Kamarajugadda et al. [18].

. Increasing platinum mass loading has two competing effects as
shown in Fig. 6-(4). First, it increases the accessible reaction sur-
face area, which tends to decrease the activation overpotential.
Second, it may result in lower porosity and therefore lower oxy-
gen diffusion coefficient. This tends to increase the activation
overpotential. These two effects therefore compete with each
other with the net result being that activation overpotential
decreases with mPt. This predicted result by ANN agrees with
the numerical simulation of Sun et al. [6].

. The main effect of increasing carbon mass loading is to reduce
porosity and consequently lower oxygen diffusion coefficient.
This leads to higher activation overpotential (see Fig. 6-(5)).

. Increasing ionomer loading has two competing effects. First, as
porosity decreases, the resistance to oxygen diffusion increases.
Second, as ionomer content inside the agglomerate increases, the
activation overpotential decreases. These two effects therefore
compete with each other with the net result being demonstrated
in Fig. 6-(6). The observed trend is in agreement with the exper-
imental results reported by Song et al. [19] and the numerical
predictions by Yin [20].

. The average changes of activation overpotential in response to
changes in GDL penetration portion in the CL is displayed in
Fig. 6-(7). Since this parameter limits the CL porosity by its pen-
etration, the CL activation overpotential increases.
. Fig. 6-(8) shows the average changes of activation overpotential
with respect to changes in GDL porosity. In fact, the CL porosity
increases as we increase the amount of pores in GDL. Therefore,
the CL performance is enhanced and activation overpotential
decreases.
eters, i.e., ionomer film thickness covering the agglomerate, agglomerate radius,
t and CL thickness) on the CL activation overpotential obtained by the analysis of

9. The behavior of the activation potential with respect to the CL
thickness has two opposing effects as we increase the CL thick-
ness. First, it should be increased since the oxygen diffusion
length increases. Second, the amount of porosity also increases
and it enhances the CL performance. The final outcome is demon-
strated in Fig. 6-(9). The existence of a minimum activation
overpotential (i.e., optimum performance) with respect to the
CL thickness has been also observed in previous studies [18,21].

We note that the optimum performance is achieved at some
intermediate points for agglomerate radius ragg, membrane content
Lm,c, and catalyst thickness lc and one of the endpoints of the range
for other parameters.

In order to attain a more accurate indication of the relative
importance of the independent variables and their interactions,
ANOVA test was used. The obtained ANOVA table in this study is
summarized in Table 3. Let us look at the calculated F values for each
parameter, which has been shown in the column 5 of Table 3. The
F value for each parameter is simply the ratio of the mean square
deviation of that parameter to the mean square error. This statis-
tic is used to determine the significance of input parameters, which
include CL structural characteristics. In general, a value of F less than
1 implies that the effect of the corresponding given input parameter
is smaller than the error associated with the linear superposition
approximation and therefore can be ignored. On the other hand, a
value of F above 4 generally suggests that the effect of the indepen-

dent variable is quite significant. As can be observed, s, Lm,c, and
lc have the largest influence on the CL activation overpotential �.
The effect of Lg,c, mc, ragg, and ıagg was also significant but not as
much as the effect of s, Lm,c, and lc. The effect of the other param-
eters, i.e., mPt, εg is insignificant. The interaction effect between
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Table 3
The analysis of variance (ANOVA).

Source Degree of freedom Sum of squares Mean square F

s 2 87.183 43.591 12,500
ıagg 2 0.70545 0.35275 100.75
ragg 2 3.597 1.7984 513.79
mPt 4 0.07365 0.0184 5.26
mC 2 3.0856 1.5428 440.75
Lm,c 3 9.8576 3.2859 938.81
Lg,c 2 1.6184 0.8092 231.17
εg 2 0.101 0.05055 14.44
lc 4 3.0864 0.7716 220.66
ıagg × ragg 4 0.1696 0.0424 12.115
mPt × mC 8 0.0796 0.00995 2.845
L × L 6 0.52105 0.08685 24.785
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m,c g,c

Error 36,408 127.46 0.0035
Total 36,449 237.63

he agglomerate’s geometry parameters (ıagg × ragg) on the CL per-
ormance is more significant than those interaction parameters
f catalyst particles mass loading (mPt × mC) and membrane-GDL
ontent (Lm,c × Lg,c).

Note that the value of the activation overpotential at a spec-
fied level of an independent parameter is the average value of
ll activation overpotentials while all other independent variables
hange within their acceptable ranges. Therefore, the activation
verpotential values for a given independent parameter are not
ssentially the same and therefore are subject to the statistical
rrors. As can be observed, the significance of each independent
arameter has been measured in terms of F statistic for each

ndependent variable in Table 3. In addition, as you noticed, the
omputed F values would be different if one changes the range of
ndependent parameters. However, notice that the selected range
f each independent parameter is acceptable and can be used (or
bserved) in some practical circumstances. Therefore, it would
e useful to compare the significance of underlying independent
arameters, which can be changed within the range defined in this
ork.

. Conclusion

For the first time, a novel methodology, namely, ANN approach
ogether with statistical methods (ANOM and ANOVA meth-
ds) were employed for modeling, prediction, and analysis of
n agglomerate cathode CL performance. It was shown that the
esigned ANN is capable of modeling and predicting the cath-
de CL activation overpotential for different input parameters
ncluding eight structural parameters. Instead of solving the ODEs,
he ANN provides a simple and direct means for the prediction
f activation overpotential and is able to consider the effect of
nfluencing parameters simultaneously. ANOM and ANOVA meth-
ds also allowed us extract physical explanations regarding the
nderlying system modeled using the ANN approach. Cathode CL
hickness and the membrane volume content in CL were found
o be the most significant structural parameters affecting the CL
erformance.

ist of symbols

active surface area within the agglomerate (m−1)

agg total external area of active sites of agglomerate per unit

volume of CL (m−1)
total active area of agglomerate per unit volume of CL
(m−1)

s reaction surface area per unit mass of platinum (m2 kg−1)

[
[
[
[
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C concentration (mol m−3)
davg average pore diameter (m)
DO2 diffusion coefficient (m2 s−1)
DKn Knudsen diffusion coefficient (m2 s−1)
f mass fraction of platinum to that of Pt/C particles
F Faraday constant (96, 485 coulombs mol−1)
i local current density (A m−2)
i0 exchange current density (A m−2)
I cell current density (A m−2)
kl reaction rate constant (m s−1)
lc catalyst layer thickness (m)
Lg,c volume fraction of GDL penetrating into the CL
Lm,c voltage fraction of the ionomer phase in the CL
Ls volume fraction of the GDL solid material penetrated into

the CL
mPt platinum mass loading (kg m−2)
mC carbon mass loading (kg m−2)
M molecular weight (kg mol−1)
MT Thiele module
nagg number of agglomerates per unit volume of CL (m−3)
P pressure (Pa)
ragg agglomerate radius (m)
R̄ universal gas constant (8.314 J mol−1 K−1)
s liquid water saturation
T temperature (K)
V volume (m3)
r, z coordinate (m)

Greek letters
˛ transfer coefficient
ıagg ionomer film thickness (m)
εc CL porosity
εg GDL porosity
� activation overpotential (V)
�C carbon density (kg m−3)
�Pt platinum density (kg m−3)
� electronic conductivity (S m−1)
� protonic conductivity (S m−1)
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